
 
Client: A Premium Automobile &

Commercial Vehicle Manufacturer

Cloud Migration Journey of a Legacy Application

U S E C A S E

www.adesso.com.tr / www.adesso.de

https://www.adesso.com.tr/
https://www.adesso.de/

Cloud

Migration

Use Case

Point of Initiation

Migration of the data
maintenance application to
cloud platform.

Company Profile

Our customer is one of the biggest
premium car producers and the
world’s biggest commercial vehicle
manufacturer.

The company runs production
facilities in many countries all over
the world.

Project Goals

• Improving the flexibility
and agility of delivery

• On-demand and fast
paced cloud service

• Utilizing DevOps solutions

• High level automation

• Improving delivery quality

& security in concepts

Overview

Cloud Migration Journey of a Legacy Application

Goals

Improve the flexibility and maintainability of
the application without compromising the
security, and reduce the total cost of
ownership. Integration with the IT tech stack
was another issue to be addressed.

Operating on cloud unfolds outstanding benefits

for organizations.

>Decreasing governance related costs

>Introducing on demand cloud services

>Improving time to market

>Improving delivery quality and security

Challenges

Cloud migration introduces its own challenges.
Dev. team was responsible from migrating an
application that runs on Websphere, uses DB2
as database, and implemented with Java EE
platform technology to a modern environment.

The team had to take the following into account

> Deciding on the workloads to be moved and

the order of migration.

> Maintaining the reliability and performance of

business-critical services.

> Implementing appropriate levels of security

controls and regulatory compliance.

Accelerating cloud migration

We have decided to switch to a Spring boot
application.

Since DB2 database was not an option
anymore they have utilized PostgreSQL as
the new database.

Solution

With a clearly defined, well-researched and
coherent strategy, the development team has
initiated the migration project.

Application maintenance, development and integration are now much easier and faster.

New features and bug fixes can be deployed to Integration and Production environments
very quickly, sometimes on the same day after the request is made. Before it took at least
a couple of weeks.

The deployment frequency of the application was improved %67 (from 3 weeks to 1
week in average) in 1 year.

The cost of running the application, dropped by a large margin, since new environment
and the services it provides is much cheaper.

Results
The product was successfully migrated from legacy environment to Cloud Foundry platform.

EJB to Spring Boot

1- Changing the annotations EJB

EJB has own its individual bean definition annotations for REST scenarios, many REST annotations
changed, such as: "@Stateless" bean definition annotation changed as "@Component" or "@Service"
or "@Repository" 

2- Interceptor Changes

The legacy app had its own interceptor annotation as “@InterceptorIcon” for logging or executing
some logic after or before related method calls. All annotations changed with custom
“@InterceptorIconAspect”. The new annotation used with the “@Aspect” annotation definition on the
class level.

3- Changing the Transaction Management

 
The legacy application was run on WebSphere and the EJB application uses Container Managed
Transaction. Spring Boot has a separate application server, the embedded Tomcat. Even using
embedded or divided tomcat, developers can manage processes with code-level annotations. The
"@Transactional" annotation was defined. This definition was able to merge existing transactions or
create a new transaction if there is none.

4- Changing the Authentication & Authorization Services

The authentication mechanism was redefined using Spring Boot configurations. For restful request
authentication JWT has been used. On the login mechanism, the customer SSO login service was
implemented.

5- Updating Spring Batch

All of batch job configurations and steps were altered to work with new version.

OpenJPA to Hibernate

The general usage of OpenJPA and Hibernate has the same annotations because of these two ORM
frameworks using the “JAVAX” ORM library. The “Hikari” database connection pool was used.

DB2 to PostgreSQL

All the native SQLs checked and changed to the corresponding PostgreSQL keywords. There are some
issues with data type differences between DB2 and PostgreSQL. For example, DB2 uses BLOB or CLOB
for byte typed variables but they were converted to Byte. Data migration from DB2 to PostgreSQL.
With a tool we’ve developed which takes data from DB2 and checks data types and if datatype using
with a different keyword in PostgreSQL, the tool changes that keyword and creates an insert script
respectively.

CI & CD

CI, CD pipelines and auto-deployment functions are implemented using Jenkins. Cucumber and
Selenium were used as Test Automation tools. SonarQube also integrated into CI/CD pipeline to
continuously check the code quality at expected levels.

Implementation
Steps

CONTACT

www.adesso.com.tr • info@adesso.com.tr

T +90 212 346 20 02

Maslak Mah. Ahi Evran Cad. Olive Plaza No: 11 34398
Sarıyer/IST

THANK
YOU!

